Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Deliv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38424427

RESUMO

BACKGROUND: The clinical efficiency of photodynamic therapy (PDT) in combination with chemotherapy has proven to be a promising strategy for tumor treatment, yet is restricted by the high glutathione (GSH) concentration at the tumor site and nonspecific drug targeting. OBJECTIVE: The goal of the current research was to create a biocompatible GSH-depleting and tumor- targeting nanoparticle (denoted as DOX/CA@PCN-224@HA) for the combined photodynamic and chemo photo-chemo) therapy. METHODS: The nanoparticles were characterized by transmission electron microscopy (TEM). A UV-vis spectrophotometer was used to measure the drug loading efficiency (DE) and encapsulation efficiency (EE). The GSH-depleting ability was measured using Ellman's test. Confocal laser scan microscopy (CLSM) was used to assess the cellular uptake. MTT was adopted to evaluate the cytotoxicity of DOX/CA@PCN-224@HA against 4T1 cells. RESULTS: The altered PCN-224 showed excellent monodispersing with a dimension of approximately 193 nm ± 2 nm in length and 79 nm ± 3 nm in width. The larger and spindle grid-like structure of PCN-224 obtains better dual-drug loading ability (DOX: 20.58% ± 2.60%, CA: 21.81% ± 1.98%) compared with other spherical PCN-224 nanoparticles. The ultimate cumulative drug release rates with hyaluronidase (HAase) were 74% ± 1% (DOX) and 45% ± 2% (CA) after 72 h. DOX/CA@PCN-224@HA showed GSH-consuming capability, which could improve the PDT effect. The drug-loaded nanoparticles could accurately target 4T1 cells through biological evaluations. Moreover, the released DOX and CA display cooperative effects on 4T1 cells in vitro. DOX/CA@PCN-224@HA nanoparticles showed inhibition against 4T1 cells with an IC50 value of 2.71 µg mL-1. CONCLUSION: This nanosystem displays great potential for tumor-targeted enhanced (photo-chemo) therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...